Is Seeing Believing? How Recommender Interfaces Affect Users’ Opinions

نویسندگان

  • Dan Cosley
  • Shyong K. Lam
  • Istvan Albert
  • Joseph A. Konstan
  • John Riedl
چکیده

Recommender systems use people’s opinions about items in an information domain to help people choose other items. These systems have succeeded in domains as diverse as movies, news articles, Web pages, and wines. The psychological literature on conformity suggests that in the course of helping people make choices, these systems probably affect users’ opinions of the items. If opinions are influenced by recommendations, they might be less valuable for making recommendations for other users. Further, manipulators who seek to make the system generate artificially high or low recommendations might benefit if their efforts influence users to change the opinions they contribute to the recommender. We study two aspects of recommender system interfaces that may affect users’ opinions: the rating scale and the display of predictions at the time users rate items. We find that users rate fairly consistently across rating scales. Users can be manipulated, though, tending to rate toward the prediction the system shows, whether the prediction is accurate or not. However, users can detect systems that manipulate predictions. We discuss how designers of recommender systems might react to these findings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Adaptive Educational Hypermedia ‎Recommender Accommodating User’s Learning ‎Style and Web Page Features‎

Personalized recommenders have proved to be of use as a solution to reduce the information overload ‎problem. Especially in Adaptive Hypermedia System, a recommender is the main module that delivers ‎suitable learning objects to learners. Recommenders suffer from the cold-start and the sparsity problems. ‎Furthermore, obtaining learner’s preferences is cumbersome. Most studies have only focused...

متن کامل

Increasing the Accuracy of Recommender Systems Using the Combination of K-Means and Differential Evolution Algorithms

Recommender systems are the systems that try to make recommendations to each user based on performance, personal tastes, user behaviors, and the context that match their personal preferences and help them in the decision-making process. One of the most important subjects regarding these systems is to increase the system accuracy which means how much the recommendations are close to the user int...

متن کامل

A social recommender system based on matrix factorization considering dynamics of user preferences

With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...

متن کامل

An Effective Algorithm in a Recommender System Based on a Combination of Imperialist Competitive and Firey Algorithms

With the rapid expansion of the information on the Internet, recommender systems play an important role in terms of trade and research. Recommender systems try to guess the user's way of thinking, using the in-formation of user's behavior or similar users and their views, to discover and then propose a product which is the most appropriate and closest product of user's interest. In the past dec...

متن کامل

"They Keep Coming Back Like Zombies": Improving Software Updating Interfaces

Users often do not install security-related software updates, leaving their devices open to exploitation by attackers. We are beginning to understand what factors affect this software updating behavior but the question of how to improve current software updating interfaces however remains unanswered. In this paper, we begin tackling this question by studying software updating behaviors, designi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003